6 research outputs found

    Configurations centrales en toile d'araignée

    Full text link
    Ce mĂ©moire est consacrĂ© Ă  une classe remarquable de solutions du problĂšme des N corps appelĂ©es configurations centrales. Ces configurations, notamment pour des corps coplanaires, sont Ă©troitement liĂ©es aux solutions homographiques : en tout temps, la position des corps est obtenue par homothĂ©tie et/ou rotation de la position initiale. Notre objectif est d’étudier l’existence de configurations centrales en toile d’araignĂ©e donnĂ©es par n×ℓ masses disposĂ©es aux points d’intersection de n cercles concentriques avec ℓ demi-droite concourante, sous l’hypothĂšse que les ℓ masses du i ᶱ cercle sont Ă©gales Ă  une constante positive mᔹ ; nous discutons Ă©galement le cas oĂč nous ajoutons une masse centrale m₀ au point de concours des ℓ demi-droites. Une premiĂšre mĂ©thode analytique amĂšne Ă  l’existence de ces configurations centrales lorsque n = 2,3,4 et ℓ arbitraire pour n’importe quelles valeurs strictement positives de m₁, . . . , mₙ. Une seconde mĂ©thode analytique donne l’existence et l’unicitĂ© de telles configurations centrales lorsqu’on contraint ℓ Ă  ĂȘtre Ă©gal Ă  2, . . . ,9 et n arbitraire pour n’importe quelles valeurs strictement positives de m₁, . . . , mₙ. De plus, nous Ă©tendons le rĂ©sultat pour ℓ = 10, . . . ,18 en imposant m₁ ≄ · · · ≄ mₙ et en bornant la valeur de n dans chaque cas. En outre, pour ces deux mĂ©thodes analytiques, nous dĂ©montrons que les rĂ©sultats restent vrais pour les configurations a N = n × ℓ + 1 corps, c’est-Ă -dire lorsqu’on ajoute une masse strictement positive au centre de masse. Enfin, nous donnons un algorithme permettant de prouver rigoureusement l’existence et l’unicitĂ© locale d’une telle configuration centrale avec un choix arbitraire de n, ℓ et m₁, . . . , mₙ. L’algorithme est applique Ă  tous les n ≀ 100 et toutes les valeurs paires ℓ ≀ 200 lorsque m₁ = . . . = mₙ = 1/ℓ. Ceci est suffisant pour montrer l’existence des configurations centrales en toile d’araignĂ©e pour tout n ≀ 100, ℓ ≀ 200 pair et telles que m₁ = . . . = mₙ pour n’importe quelle valeur strictement positive.This thesis is dedicated to the study of a specific class of solutions for the N-body problem called central configurations. These configurations, especially in the planar case, are closely related to homographic solutions: at any time, the position of the bodies can be obtained by a rotation and/or a rescaling of the initial position. Our aim is to prove the existence of spiderweb central configurations given by n × ℓ masses located at the intersection of n concentric circles with ℓ concurrent half-lines, under the hypothesis that the ℓ masses on the i-th circle are equal to a positive constant mᔹ ; we also discuss the case where we add a central mass m₀ located at the intersection of the ℓ halflines. A first analytical method leads to the existence of these central configurations when n = 2,3,4 and ℓ arbitrary for any strictly positive values of m₁, . . . ,mₙ. A second analytical method yields the existence and uniqueness of such central configurations when we restrict ℓ to be equal to 2, . . . ,9 and n arbitrary for any strictly positive values of m₁, . . . , mₙ. In addition, we extend the result for ℓ = 10, . . . ,18 by requiring m₁ ≄ · · · ≄ mₙ and bounding the value of n in each case. Furthermore, for these two analytical methods, we demonstrate that the results hold for spiderweb configurations with N = n × ℓ + 1 bodies, that is when we add a strictly positive mass at the center of mass. Finally, we give an algorithm providing a rigorous proof of the existence and local uniqueness of such a central configuration with an arbitrary choice of n, ℓ and m₁, . . . , mₙ. The algorithm is applied to all n ≀ 100 and all even values ℓ ≀ 200 when m₁ = . . . = mₙ = 1/ℓ. This is enough to show the existence of spiderweb central configurations for all n ≀ 100, ℓ ≀ 200 even and such that m₁ = . . . = mₙ for any value strictly positive

    Numerical computation of transverse homoclinic orbits for periodic solutions of delay differential equations

    Full text link
    We present a computational method for studying transverse homoclinic orbits for periodic solutions of delay differential equations, a phenomenon that we refer to as the \emph{Poincar\'{e} scenario}. The strategy is geometric in nature, and consists of viewing the connection as the zero of a nonlinear map, such that the invertibility of its Fr\'{e}chet derivative implies the transversality of the intersection. The map is defined by a projected boundary value problem (BVP), with boundary conditions in the (finite dimensional) unstable and (infinite dimensional) stable manifolds of the periodic orbit. The parameterization method is used to compute the unstable manifold and the BVP is solved using a discrete time dynamical system approach (defined via the \emph{method of steps}) and Chebyshev series expansions. We illustrate this technique by computing transverse homoclinic orbits in the cubic Ikeda and Mackey-Glass systems

    Constructive proofs for localized radial solutions of semilinear elliptic systems on Rd\mathbb{R}^d

    Full text link
    Ground state solutions of elliptic problems have been analyzed extensively in the theory of partial differential equations, as they represent fundamental spatial patterns in many model equations. While the results for scalar equations, as well as certain specific classes of elliptic systems, are comprehensive, much less is known about these localized solutions in generic systems of nonlinear elliptic equations. In this paper we present a general method to prove constructively the existence of localized radially symmetric solutions of elliptic systems on Rd\mathbb{R}^d. Such solutions are essentially described by systems of non-autonomous ordinary differential equations. We study these systems using dynamical systems theory and computer-assisted proof techniques, combining a suitably chosen Lyapunov-Perron operator with a Newton-Kantorovich type theorem. We demonstrate the power of this methodology by proving specific localized radial solutions of the cubic Klein-Gordon equation on R3\mathbb{R}^3, the Swift-Hohenberg equation on R2\mathbb{R}^2, and a three-component FitzHugh-Nagumo system on R2\mathbb{R}^2. These results illustrate that ground state solutions in a wide range of elliptic systems are tractable through constructive proofs

    Periodic orbits in Hoƙava–Lifshitz cosmologies

    Get PDF
    We consider spatially homogeneous Hoƙava–Lifshitz models that perturb General Relativity (GR) by a parameter v∈(0,1) such that GR occurs at v=1/2. We describe the dynamics for the extremal case v=0, which possess the usual Bianchi hierarchy: type I (Kasner circle of equilibria), type II (heteroclinics that induce the Kasner map) and type VI0,VII0 (further heteroclinics). For type VIII and IX, we use a computer-assisted approach to prove the existence of periodic orbits which are far from the Mixmaster attractor. Therefore we obtain a new behaviour which is not described by the BKL picture of bouncing Kasner-like states

    Periodic orbits in Ho\v{r}ava-Lifshitz cosmologies

    Full text link
    We consider spatially homogeneous Ho\v{r}ava-Lifshitz (HL) models that perturb General Relativity (GR) by a parameter v∈(0,1)v\in (0,1) such that GR occurs at v=1/2v=1/2. We describe the dynamics for the extremal case v=0v=0, which possess the usual Bianchi hierarchy: type I (Kasner circle of equilibria), type II (heteroclinics that induce the Kasner map) and type VI0,VII0\mathrm{VI_0},\mathrm{VII_0} (further heteroclinics). For type VIII and IX, we prove the existence of periodic orbits which are far from the Mixmaster attractor, and thereby yield a new behaviour which is not described by the BKL picture.Comment: 19 pages, 7 figure
    corecore